
Build a PHP Safety Net
Streamline and Safeguard: Automated Checks

Before You Commit

AARON HOLBROOK, 2023

Why?

Why Have a Safety Net?

• Cleaner, more consistent, safer code

• Unified coding standard is auto-applied

• Automatically perform static analysis of code and help PREVENT
an entire range of bugs

• Automatically run unit, integration or acceptance tests

AARON HOLBROOK, 2023

AARON HOLBROOK

Over 20 years of PHP experience

Public Speaker & Workshop Leader

Driven by E!iciency & Problem-Solving

A Lifelong Builder: Digital & Physical

AARON HOLBROOK, 2023 ZEEK.COM

Your Debugging Expert for the Day

Principal Engineer at Zeek: Specializing in Solving Problems

http://zeek.com

Prerequisites: Developer Workflows
• Bash/Shell Terminal: Ensure you have access to a Bash or Shell terminal. Windows users may consider using WSL or

Git Bash.

• PHP Locally Installed: Make sure you have PHP installed on your local machine. We will be running various PHP-based
commands. PHP 8.2 is recommended.

• Composer: This package manager for PHP is essential for some of the tools we'll be using. You can download it here
(https://getcomposer.org).

• GitHub Account: If you don't have a GitHub account yet, please create one as we will be working with Git repositories
(and automating GitHub Actions).

• SSH Keys: Generate an SSH private/public key pair if you haven't already. This is crucial for secure communication with
GitHub. Here’s a guide on how to do this (https://docs.github.com/en/authentication/connecting-to-github-with-ssh/
generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent).

• GitHub Authentication: Make sure you're locally authenticated with GitHub using your SSH keys. This will allow us to
easily clone repositories and push changes.

• GNU Make (Command-Line Utility Installed): GNU Make is a build automation tool that we'll be using to manage and
streamline various tasks in our PHP project. Here's how to install it based on your operating system:

• Windows: You can install GNU Make through Cygwin or WSL (Windows Subsystem for Linux).

• Linux: Generally available by default. If not, you can install it using the package manager for your specific distro,
usually with a command like sudo apt-get install make for Debian-based distributions or sudo yum install make for
Red Hat-based distributions.

• Mac: It can be installed using Homebrew with the command brew install make.

AARON HOLBROOK, 2023

What Does it Look Like

in Action?

AARON HOLBROOK, 2023

github.com/ZeekInteractive/longhornphp-tools-workshop

https://github.com/ZeekInteractive/longhornphp-tools-workshop

github.com/ZeekInteractive/longhornphp-tools-workshop

HANDS ON!

PHP Quality Tools

PHP Quality Tools

• PHP CS Fixer (for automatic code styling fixes)

• PHP Linter (for syntax checking)

• PHP Mess Detector (detect code smells and possible errors)

• PHPStan (static analyzer that looks at code typing and logic
issues)

• Pest / PHPUnit

• Rector (automated refactoring)

AARON HOLBROOK, 2023

PHP CS Fixer
A tool to automatically fix PHP Coding Standards issues

The PHP Coding Standards Fixer (PHP

CS Fixer) tool fixes your code to follow

standards.

You can also define your (team’s) style

through configuration.

https://github.com/PHP-CS-Fixer/PHP-CS-Fixer

❯ composer require friendsofphp/php-cs-fixer --dev

Install

https://github.com/PHP-CS-Fixer/PHP-CS-Fixer

❯ vendor/bin/php-cs-fixer fix src

Simple, default example

https://github.com/PHP-CS-Fixer/PHP-CS-Fixer

❯ vendor/bin/php-cs-fixer fix src/ --diff --

rules=@PSR12,@Symfony,-return_type_declaration --

exclude=vendor,tests --cache-file=/path/

to/.php_cs.cache

Complex, verbose example

https://github.com/PHP-CS-Fixer/PHP-CS-Fixer

https://github.com/PHP-CS-Fixer/PHP-CS-Fixer

❯ vendor/bin/php-cs-fixer fix --config=build/php-cs-

fixer/php-cs-fixer.dist.php --quiet

Example using a configuration file

https://github.com/PHP-CS-Fixer/PHP-CS-Fixer

PHP Parallel Linter
This application checks the syntax of PHP files in parallel

Linting's purpose is to identify

syntax errors in PHP files.

Syntax errors are basic

mistakes in the code that

prevent it from running, like

missing semicolons or

mismatched brackets.

❯ composer require php-parallel-lint/php-parallel-

lint --dev

Install

https://github.com/php-parallel-lint/PHP-Parallel-Lint

❯ vendor/bin/parallel-lint --exclude .git --exclude

app --exclude vendor .

Simple, default example

https://github.com/php-parallel-lint/PHP-Parallel-Lint

❯ vendor/bin/parallel-lint -j 10 app config routes --

no-progress --colors --blame

Slightly more complex example

https://github.com/php-parallel-lint/PHP-Parallel-Lint

PHP Mess Detector
This application checks for code smells and best practices

PHPMD looks for several

potential problems:

• Possible bugs

• Suboptimal code

• Overcomplicated
expressions

• Unused parameters,
methods, properties

❯ composer require phpmd/phpmd --dev

Install

https://phpmd.org/

❯ vendor/bin/phpmd src text codesize,unusedcode,naming

Simple, default example

https://phpmd.org/

❯ vendor/bin/phpmd src xml unusedcode,design,codesize

--exclude vendor/,tests/ --strict --ignore-

violations-on-exit --exclude NPathComplexity --

minimumpriority 300

Complex example

https://phpmd.org/

https://phpmd.org/

❯ vendor/bin/phpmd app ansi build/phpmd/phpmd.xml

Example using a configuration file

https://phpmd.org/

PHPStan
PHPStan finds bugs in your code without writing tests

PHPStan scans your whole

codebase and looks for

both obvious & tricky bugs.

Even in those rarely

executed if statements that

certainly aren't covered by

tests.

https://phpstan.org/

❯ composer require phpstan/phpstan --dev

Install

https://phpstan.org/

❯ vendor/bin/phpstan analyse src tests

Simple, default example

https://phpstan.org/

❯ vendor/bin/phpstan analyse --level=4 --

configuration=phpstan-baseline.neon --no-progress --

paths=../../app --error-format=table --report-

unmatched-ignored-errors=false

Complex example

https://phpstan.org/

https://phpstan.org/

❯ vendor/bin/phpstan analyse --error-format=table -c

build/phpstan/phpstan.neon.dist

Example using a configuration file

https://phpstan.org/

Pest / PHPUnit
The elegant PHP testing framework

Pest is a testing framework

with a focus on simplicity,

meticulously designed to bring

back the joy of testing in PHP.

https://pestphp.com/

❯ composer require pestphp/pest --dev --with-all-

dependencies

❯ vendor/bin/pest --init

Install

https://pestphp.com/

❯ vendor/bin/pest

Simple, default example

https://pestphp.com/

❯ vendor/bin/pest --bootstrap=../vendor/autoload.php

--colors --filter="Test\.php$" --env=APP_ENV=testing

--env=CACHE_DRIVER=array --env=DB_CONNECTION=sqlite

--env=MAIL_DRIVER=array --env=QUEUE_CONNECTION=sync

--env=SESSION_DRIVER=array tests

Complex example

https://pestphp.com/

https://pestphp.com/

❯ vendor/bin/pest --colors=always -c build/pest/

phpunit.xml

Example using a configuration file

https://pestphp.com/

Consistency Across
Projects

 vendor/bin/pest --colors=always -c build/

pest/phpunit.xml

phpstan analyse --error-format=table -c

/phpstan.neon.dist

Example using a configuration file

❯ vendor/bin/parallel-lint -j 10 app config routes

no-progress --colors --blame

Slightly more complex example

❯ vendor/bin/php-cs-fixer fix

fixer/php-cs-fixer.dist.php --

Example using a confi
Introducing Make

GNU Make
What is GNU Make?

• Automated Build Tool

• Reads `Makefile` for build rules

• Ideal for automating repetitive tasks

GNU Make
Inside a Makefile

• Rules with targets, prerequisites, and commands

• Variables and macros for flexibility

• Comments for clarity # This is a comment

deploy:

 @echo "Deploying the application..."

Simple Makefile

GNU Make
Why Use Make for PHP?

• Simplify multiple command execution

• Combine PHP tools like phpstan, cs-fixer, and more

• Set up advanced flags per subcommand

GNU Make
Building a Safety Net with Make

• Unified command for linting,
testing, and analyzing

• Easy addition of new tools
and flags

• Ensure consistent build and
testing environment

Introducing Git Hooks

Git Hooks
(client side)

• pre-commit: Runs before a commit is created, useful for performing local checks.

• prepare-commit-msg: Runs before the commit message editor is opened but after
default message is created. Useful for editing the default commit message.

• commit-msg: Runs after the commit message is entered but before the commit is
made, generally to validate or modify the commit message.

• post-commit: Runs after the commit is made; often used for notifications or other
post-commit actions.

• pre-rebase: Runs before a rebase is executed, often used to disallow rebasing of
published commits.

• post-rewrite: Runs after a commit is amended or rebased; typically used for
notification or to refresh status.

• pre-push: Runs before a `git push`, useful for doing server-side validation without
making a round-trip.

• ... the list goes on ...

pre-commit
Runs before a commit is created, useful for performing local checks.

• Common Uses

• Code Linting

• Unit Testing

• Code Formatting

AARON HOLBROOK, 2023

pre-commit
Runs before a commit is created, useful for performing local checks.

• Benefits

• Ensures code quality

• Prevents bad commits

• Streamlines workflow

AARON HOLBROOK, 2023

pre-commit
Runs before a commit is created, useful for performing local checks.

• Setup

• Navigate to `.git/hooks`

• Create & make `pre-commit` file executable

• Add your script

AARON HOLBROOK, 2023

Introducing GitHub Actions

The Zeek Build Process

https://github.com/ZeekInteractive/zeek-build-process

github.com/ZeekInteractive/zeek-build-process

❯ composer require zeek/zeek-build-process --dev

https://github.com/ZeekInteractive/zeek-build-process

❯ ./vendor/bin/zbp install

https://github.com/ZeekInteractive/zeek-build-process

github.com/ZeekInteractive/longhornphp-tools-workshop

HANDS ON!

🌐 Flexible Work Environment

💡 Innovative Projects

🌱 Growth and Development Opportunities

⚖ Work-Life Balance

🏡 100% remote

📜 Seasoned company history with top talent

💰 Competitive Compensation

🛌 Flexible Fridays Program

🏖 Flexible PTO

🩺 401k, Health, Dental, Vision Insurance

🎉 Fun as a Core Value: We believe life's too long to be so

serious– enjoy the journey with us!

Join our Team!

Inspired or curious?
Reach out and let's discuss further!

aaron@zeek.com

Scan To Explore Opportunities

mailto:aaron@zeek.com

